Frobenius-Schur Indicators for Some Fusion Categories Associated to Symmetric and Alternating Groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frobenius-schur Indicators for a Class of Fusion Categories

We give an explicit description, up to gauge equivalence, of group-theoretical quasi-Hopf algebras. We use this description to compute the Frobenius-Schur indicators for grouptheoretical fusion categories.

متن کامل

Higher Frobenius-schur Indicators for Pivotal Categories

We define higher Frobenius-Schur indicators for objects in linear pivotal monoidal categories. We prove that they are category invariants, and take values in the cyclotomic integers. We also define a family of natural endomorphisms of the identity endofunctor on a k-linear semisimple rigid monoidal category, which we call the Frobenius-Schur endomorphisms. For a k-linear semisimple pivotal mono...

متن کامل

Computing Higher Frobenius-schur Indicators in Fusion Categories Constructed from Inclusions of Finite Groups

We consider a subclass of the class of group-theoretical fusion categories: To every finite group G and subgroup H one can associate the category of G-graded vector spaces with a two-sided H-action compatible with the grading. We derive a formula that computes higher Frobenius-Schur indicators for the objects in such a category using the combinatorics and representation theory of the groups inv...

متن کامل

Frobenius-schur Indicators and Exponents of Spherical Categories

We obtain two formulae for the higher Frobenius-Schur indicators: one for a spherical fusion category in terms of the twist of its center and the other one for a modular tensor category in terms of its twist. The first one is a categorical generalization of an analogous result by Kashina, Sommerhäuser, and Zhu for Hopf algebras, and the second one extends Bantay’s 2nd indicator formula for a co...

متن کامل

Frobenius-Schur Indicator for Categories with Duality

We introduce the Frobenius–Schur indicator for categories with duality to give a category-theoretical understanding of various generalizations of the Frobenius–Schur theorem including that for semisimple quasi-Hopf algebras, weak Hopf C∗-algebras and association schemes. Our framework also clarifies a mechanism of how the “twisted” theory arises from the ordinary case. As a demonstration, we es...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebras and Representation Theory

سال: 2016

ISSN: 1386-923X,1572-9079

DOI: 10.1007/s10468-016-9593-8